

GENETIC ESTIMATES AND GENE ACTION FOR OBTAINING PROMISING HETEROTIC HYBRIDS IN BOTTLE GOURD [LAGENARIA SICERARIA (MOLINA) STANDL.]

P. K. RAY1*, G. C. YADAV², D. K. BARANWAL³ AND H.K. SINGH¹

ABSTRACT

¹Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural University, Sabour Bhagalpur - 813 210 (Bihar) ²Department of Horticulture (Vegetable Science), N.D.U.A. & T. Faizabad - 224 229 (U.P.) ³Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bhagalpur - 813 210 (Bihar) e-mail: p.pankajray@gmail.com

KEYWORDS

Combining ability Diallel analysis Gene action Heterosis Wr-Vr graph

Received on : 24.03.2015

Accepted on : 10.06.2015

*Corresponding author

INTRODUCTION

Bottle gourd [Lagenaria siceraria (Molina) Standl.] is widely grown cucurbits throughout India for its delicate and tender fruits. In recent, bottle gourd improvement programmes is mainly focus on heterosis breeding. Identification of suitable parents with good combining ability (GCA) and derivation of best F, hybrids having better specific combining ability (SCA) are prerequisite for full exploitation of heterosis in desirable direction. Out of several mating design, Diallel mating design is most frequently used to determine nature and magnitude of gene action by calculating genetic components, GCA and SCA variances and their effects in many self, often-cross and cross pollinated crops as similar reported by Pitchaimuthu and Sirohi (1994). Parvathi and Reddy (2005) reported that the ratio estimates of GCA and SCA variances revealed nonadditive genetic variances for days to first male flowering, days to first female flowering, node number of first male flowering, node number of first female flowering, fruits per vine, sex ratio and fruit weight. Sit and Sirohi (2008) revealed that the gene distribution among the parents was found asymmetry as the proportion of dominant and recessive genes exceeds one for all the studied characters except vine length. It indicates ample scope of exploitation of hybrid vigour in bottle gourd. Considering aforesaid facts, the prime objective of present study is to analyze heterosis, combining ability and gene action through diallel mating design for earliness and yield components.

MATERIALS AND METHODS

Gene action, magnitude of exploitable heterosis and combining ability variance and its effects were studied

through half diallel analysis including 45 F_1 hybrids derived by crossing ten diverse bottle gourd parents for earliness and yield components. Data was recorded for twelve quantitative traits including 5 maturity traits for

earliness. Ratio of GCA and SCA variance revealed preponderance of non-additive genetic variance for all studied

traits except fruit length. The genetic ratio $H_2/4H_1$ revealed that the asymmetrical distribution of the positive and negative alleles at all loci for most of the traits. All traits exhibit below 50 per cent narrow sense heritability except fruit length (72%). The average degree of dominance $(H_1/D)^{1/2}$ revealed that over dominance gene action for most

of the yield related traits except fruit length. The best performing F, hybrids regarding earliness, standard heterosis,

SCA effects and mean performance of crosses were found in crosses Pusa Naveen x NDBG-603, NDBG-707-2 x NDBG-603 and NDBG-707-2 x NDBG-624. Based on earliness, desirable fruit shape and high fruit yield, elite

hybrids were NDBG-707-2 x NDBG-624, NDBG-51 x NDBG-601 and NDBG-517 x NDBG-751.

The field experiment was conducted at main experiment station of Department of Vegetable Science, N.D. University of Agriculture and Technology (Narendra Nagar), Faizabad which geographically falls under humid sub-tropical climate (Gangetic alluvial plains of eastern Uttar Pradesh) and located in between 24.47° and 26.56° N latitude and 82.12° and 83.98°E longitude at an altitude of 113 meters above the mean sea level during Zaid, 2011. The soil type of experimental site was clay with neutral reaction (soil pH 7.0-7.5).

The experiment materials consist of ten diverse parents who were procured from Department of Vegetable Science, N.D.U.A. &T., Faizabad. After selfing, crosses were attempted in half diallel fashion during summer 2010. Derived 45 F₁'s were carried out in randomized complete block design (RCBD) in three replications. The crop was planted in rows spaced at 3.0 meters with plant to plant spacing of 0.5 meter apart during summer, 2011. All the recommended agronomic practices and protective measures were followed to raise a healthy crop. Twelve important polygenic traits were considered for present study. Observations were recorded on average mean

Table 1: ANOVA for 10 x 10 diallel set and its combinin	g ability for twelve studied traits in bottle gourd
---	---

Source of variation	DF	DAFSF	DAFPF	NAFSF	NAFPF	DFFH	$VL\left(m ight)$	PBP	FL (cm)	FC(cm)	FW (kg)	FP	FYP(kg)
Replications	2	0.12	1.06	0.22	0.11	3.50	0.01	0.56	2.47	3.33	0.00	0.26	0.02
Genotypes	54	67.62**	72.41**	4.36**	10.70**	48.25**	1.81**	60.27**	94.74**	22.08**	0.09**	3.07**	2.47**
Parents	9	78.43**	168.27**	2.01**	27.81**	97.06**	1.27**	166.13**	143.05**	77.77**	0.19**	4.70**	1.20**
Hybrids	44	65.98**	54.42**	4.24**	5.70**	35.80**	1.91**	36.80**	86.28**	9.33**	0.07**	2.78**	2.67**
Parents vs. Hybrids	1	42.16**	1.01	30.79**	* 76.99**	156.92**	2.76**	139.92**	31.84**	82.16**	0.00	1.07*	5.16**
Error	108	0.39	0.38	0.29	0.34	4.08	0.19	0.83	3.09	1.48	0.01	0.19	0.12
GCA	9	25.27**	35.65**	1.88**	7.80**	34.85**	1.25**	36.86**	143.36**	17.80**	0.05**	1.68**	1.09**
SCA	45	21.99**	21.83**	1.37**	2.72**	12.33**	0.48**	16.74**	9.22**	5.27**	0.03**	0.89**	0.77**
Vgca		2.10	2.96	0.15	0.64	2.79	0.10	3.05	11.86	1.44	0.00	0.14	0.09
Vsca		21.86	21.7	1.27	2.61	10.97	0.42	16.46	8.19	4.78	0.03	0.83	0.73
Vgca/Vsca		0.10	0.14	0.12	0.25	0.25	0.24	0.19	1.45	0.30	0.14	0.16	0.12
Error	108	0.13	0.13	0.10	0.11	1.36	0.06	0.28	1.03	0.49	0.00	0.06	0.04

*,** Significant at 5 % and 1 %, respectively. Traits: Days to first staminate flower anthesis(DAFSF);Days to first pistillate flower anthesis (DAFPF);Node number to first staminate flower anthesis (NAFSF); Node number to first pistillate flower anthesis (NAFSF); Days to first fruit harvest (DFFH);Vine length (m) (VL);Primary branches per plant(PBP);Fruit length (cm)(FL); Fruit circumference (cm)(FC); Fruit weight (kg)(FW); Fruits per plant(FP);Fruit yield per plant (kg)(FYP); GCA variance (Vgca); SCA variance (Vsca).

performance of six plants of each replication of each treatment for ten polygenic traits viz. days to first staminate flower anthesis, days to first pistillate flower anthesis, node number to first staminate flower anthesis, node number to first pistillate flower anthesis, days to first fruit harvest, vine length (m), primary branches per plant, fruit weight (kg), fruits per plant and fruit yield per plant (kg). Out of ten, first five maturity traits are considered desirable for earliness however Dey et al. (2012) reported these traits earlier. Observation data on two another polygenic traits viz. fruit length (cm) and fruit circumference (cm) were recorded on average mean performance of five randomly selected edible fruits of each treatment in each replication.

Statistical and biometrical analysis

The ANOVA for the experiment (RCBD) was estimated according to Panse and Sukhatme procedure (1967). Heterosis over better parent (Heterobeltiosis) and standard/check variety (Pusa Naveen) heterosis was estimated according to Hayes et *al.* (1955).

S tandard heterosis (%) =
$$\frac{F_1 - SV}{SV} \times 100$$

Heterosis (%) = $\frac{F_1 - BP}{SV} \times 100$

Where,

 F_1 = mean performance of cross, BP = mean performance of better parent and SV = mean performance of standard variety (Pusa Naveen) and significance of heterosis is tested with the help of standard error using't' test at 5 % and 1 % level of significance. Heritability (narrow sense) was calculated by using the formulae as per Hays et *al.* 1955.

$$h^{2}(ns) = \frac{2\sigma^{2}g}{2\sigma^{2}g + \sigma^{2}s + \sigma^{2}e} \times 100$$

Where, $\sigma^2 g = GCA$ variance, $\sigma^2 s = SCA$ variance and $\sigma^2 e =$ error variance.

The combining ability analysis for studied traits was carried out using method 2 of model I of Griffing (1956), where parents and F_1 's were included under the experiment excluding reciprocals. Thus the experimental material comprises of n (n + 1)/2 genotypes through half diallel mating *i.e.* 55 genotypes (10 parents and 45 its F₁ hybrids). The genetic components of variation were calculated according to Griffing's numerical approach and graphical analysis (Wr-Vr graph) given by Jinks and Hayman (1953), Hayman (1954) and Askel and Johnson (1963).

RESULTS AND DISCUSSION

Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) revealed that mean sum of squares due to genotypes, parents, hybrids and parents vs hybrids were found almost highly significant (Table 1) for all studied traits except for days to anthesis of first pistillate flower and fruit weight (kg) indicating significant differences among the traits under study as similar reported by Sharma and Sengupta (2013) and Ravishankar *et al.* (2014). It is evident from the table that mean sum of squares due to GCA and SCA were highly significant for all studied traits. Ratio of GCA and SCA variance revealed preponderance of non-additive genetic variance for all studied traits except fruit length in consonance with Quamruzzaman and Ahmad (2010).

Estimation of Heterosis and Combining ability

The GCA and SCA effects in negative direction were considered desirable for five maturity traits for earliness as previous said in consonance with Dey et al. (2012). The best performing F, hybrid regarding earliness based on maturity traits considering standard heterosis (Check, Pusa Naveen), SCA effects and mean performance of crosses was Pusa Naveen x NDBG-603, NDBG-707-2 x NDBG-603, NDBG-707-2 x NDBG-624 and NDBG-603 x NDBG-625 (Table 2 and 3) in consonance with Kumar et al. (2013), Makani et al. (2013) and Singh et al. 2013 (Table 2). Considering superior SCA effects and standard heterosis, the crosses NDBG-707-2 x NDBG-624, NDBG-51 x NDBG-601, NDBG-707-2 x NDBG-603 and NDBG-517 x NDBG-751 exhibit high fruit yield per plant (Table2 and 3) in consonance with Mendez-Natera et al. (2012), Singh, M. et al. (2013) and Yadav et al. (2013). Fruit characteristics are effective selection parameter in bottle gourd. Considering fruit characteristics, best ten F₁'s hybrids are represented in Table 5.

Table 2: Identification of superior crosses in bottle gourd based on heterosis and mean performance of hybrids

Trait	Range of heterosis % over	No.	f	Three superior Mean	Three superior	Mean
		signi hete	ificant rotic	crosses based perfo on heterobeltiosis of cr	rmance crosses based on sses Standard heterosis	performance of crosses
		CLOS	ses over			
	ВР	SP BP	SP			
DAFSF	-16.71 % ($P_3 \times P_6$) to 37.30% ($P_5 \times P_{10}$)	-0.29 % (P_{1} \times P_{6}) to 48.95 % (P_{2} \times P_{8}) 10	0	$P_3 \times P_6(-16.71) 41.6$	$F_1 \times P_6 (-0.29)$	39.88 [#]
				$P_6 \times P_8 (-13.36) + 40.5$	$F_{6} \times F_{8} (1.46)$	40.58 11 F
DAFPF	-19.29 % (P. × P.) to34.25 % (P_ × P.)	0.68 % (P × P) to 47.32 % (P × P) 11	С	P_x P_(-12.30) 42.6 P_x P_(-19.29) 40.5	$F_8 X F_9 (3.76)$	41.0 41.01
)	P ₃ × P ₆ (-13.85) 44.7	$P_{e} \times P_{s} (1.73)$	41.43
				$P_7 \times P_8(-12.38) = 44.9$	3 P ₈ x P ₉ (1.96)	41.53
NAFSF	-25.28 % ($P_3 \times P_6$) to 19.26 % ($P_2 \times P_6$)	-24.34 % (P ₃ × P ₆) to 28.66 % (P ₂ × P ₆) 18	1 4	$P_3 \times P_6 (-25.28) = 8.07^3$	$P_{3} \times P_{6} (-24.34)$	8.07*
				P ₆ x P ₉ (-25.11) 9.59 D x D (24.28) 8.08	P ₄ × P ₅ (-21.56)	8.37 8.62
NAFDF	36 01 % (D × D) to 18 11 % (D × D)	31 E 2 % (D × D) to 3 2 0 E % (D × D) 16	и 7	D v D (36 04) 0.50		0.00 8 05#
	1000 + 1000 + 100 + 100 + 100 + 100 + 100 + 100 + 10	$(1^{2} \times 1^{2})^{1/2} = (1^{2} \times 1^{2})^{1/2} = (1^{$	<u>ר</u>	P. x P. (-28.05) 10.0	$P_{-x} P_{-x} $	9.52
				P, x P, (-26.00) 11.4	7 P, x P, (-15.67)	9.61
DFFH	-11.85 % (P6 \times P9) to 23.00 % (P2 \times P3)	11.34 % (P3 \times P7) to 16.26 % (P2 \times P5) 12	-	P6 x P9 (-11.85) 62.1	l P3 x 77 (-11.34)	55.50*
				P6 x P7 (-9.34) 66	P3 × P6 (-5.21)	59.34
				P7 x P10 (-9.06) 65.1	I P7 x P8 (-4.33)	59.89
VL (m)	-43.88 % (P6 \times P10) to 13.07 % (P4 \times P5)	-28.04 % (P7 \times P10) to 42.13 % (P2 \times P6) 0	7	P4 x P5 (13.07) 6.11	P2 × P6 (42.13)	6.89
				P5 x P8 (11.10) 6.01	P6 × P8 (40.21)	6.8
				P2 x P7 (9.53) 6.01	P4 × P5 (26.05)	6.11
PBP	-66.11 % (P6 \times P10) to 108.85 % (P1 \times P2)	4.85 % (P9 \times P10) to 166.09 % (P2 \times P6) 22	43	P1 x P2 (108.85) 19.5	3 P2 x P6 (166.09)	23.75*
				P3 x P4 (99.08) 20.3	I P2 x P5 (16.32)	23.42
				P2 x P3 (98.55) 19.5	9 P4 x P8 (151.05)	22.41
FL (cm)	-28.02 % (P4 \times P9) to 25.44 % (P1 \times P2)	-14.82 % (P1 \times P9) to 52.70 % (P4 \times P8) 6	34	P1 × P2 (25.44) 44.6	3 P4 × P8 (52.70)	51.44*
				P1 x P7(16.88) 43.8	4 P2 x P8 (49.94)	50.51
				P4 x P8 (9.14) 51.4	4* P3 x P7 (44.35)	48.63
FC(cm)	-44.69 % (P8 \times P9) to 10.16 % (P2 \times P8)	-12.24 % (P1 \times P6) to 30.35 % (P3 \times P6) 0	9	P2 x P8 (10.16) 21.3	9 P3 × P6 (30.35)	25.84^{*}
				P4 × P5 (8.73) 22.8	2 P3 x P7 (20.99)	23.98
				P5 x P6 (6.10) 22.2	7 P5 x P9 (17.15)	23.22
FW (kg)	-36.26 % (P5 \times P7) to 65.45 % (P2 \times P10)	-7.02 % (P5 \times P7) to 89.26 % (P2 \times P9) 3	4	P2 × P10 (65.45) 1.36	P2 x P9 (89.26)	1.53*
				P1 x P10 (21.95) 1	P6 x P8 (69.83)	1.37
				P4 x P6 (15.08) 1.25	P7 x P9 (69.83)	1.37
£	-42.32 % (P1 \times P8) to 60.65 % (P3 \times P7)	-46.07 % (P6 \times P8) to 14.70 % (P4 \times P10) 11		P3 x P7 (60.65) 7.12	P4 × P10 (14.70)	7.54*
				P3 x P6 (46.82) 5.93	P4 × P5 (10.04)	7.24
				P4 x P5 (45.70) 7.24	P3x P7 (8.21)	7.12
FYP(kg)	-24.59 % (P1 \times P2) to 46.34 % (P3 \times P6)	-24.59 % (P1 \times P2) to 42.83 % (P3 \times P7) 11	11	P3 x P6 (46.34) 7.2	P3 x P7 (42.83)	7.57*
				P3 x P7 (45.76) 7.57	* P4 x P5 (39.81)	7.41
				P4 x P10 (36.49) 7.26	* P4 x P10 (36.92)	7.26
# indicates (west mean performance; * indicates highest mean performa DRC-751 (P10)	ce. Parents: Pusa Naveen (P ₁); NDBG-202 LF (P ₂); NDBG-707-2	(P ₃); NDBG	517(P ₄); NDBG-60(P ₅); NDBG	603 (P_d); NDBG-62 (P_); NDBG-62	25 (P ₈); NDBG-749
 ∠ li g/ all u ≤ 						

Trait	Best General combiner based	d on GCA effects	Best Specific com	piner based on SCA effects	Total no. of important specific combiner
DAFSF	1.Pusa Naveen (P_1) (-2.95)	3.NDBG-624 $(P_7)(-0.65)$	1. $P_3 \times P_6$ (-6.75)	3.P ₈ x P ₉ (-6.22)	18
DAFPF	2.NDBG-603 (P_6)(-0.74) 1.Pusa Naveen (P_1) (-3.15) 2.NDBG-601 (P_1) (-2.18)	4. NDBG-607 (P_5)(-0.63) 3. NDBG-749-2 (P_9) (-0.42) 4. NDBG-625 (P_1) (-0.29)	$1.P_6 \times P_8 (-7.62)$ 2.P x P (-7.31)	3.P ₂ x P ₆ (-6.24)	22
NAFSF	1.Pusa Naveen (P_1) (-0.56) 2. NDBG-517 (P4)(-0.37)	3. NDBG-70-2 (P_3) (-0.19)	$1.P_3 \times P_6 (-2.38)$ 2.P_4 \times P_6 (-1.76)	3.P ₇ x P ₈ (-1.69)	15
NAFPF	1. Pusa Naveen (P ₁) (-0.77) 2. NDBG-70-2 (P ₂) (-0.49)	3. NDBG-625 (P ₈) (-0.46) 4.NDBG-751(P ₁₀) (-0.43)	$1.P_{1}^{4} \times P_{2}^{5}$ (-2.66) 2.P_{2} \times P_{2} (-2.15)	3.P ₂ x P ₄ (-2.20)	18
DFFH	1. NDBG-707-2(P ₃) (-3.38)	2. NDBG-625 (P ₈) (-1.23)	$1.P_{3}^{3} \times P_{7}^{6}$ (-6.85) 2.P. × P. (-4.74)	3.P ₂ x P ₁₀ (-5.41)	14
VL (m)	1. NDBG-603 (P ₆) (0.55) 2. NDBG-625 (P) (0.32))	3. NDBG-601 (P ₅)(0.14	$1.P_2 \times P_6 (1.34)$ 2.P × P (1.15)	3.P ₆ x P ₈ (1.05)	11
PBP	1.NDBG-603 (P ₆) (3.21) 2. NDBG-202 L (P ₂) (1.42)	3.NDBG-601 (P ₅) (1.19) 4.NDBG-517 (P4) (0.88)	$1.P_1 \times P_9 (7.27)$ 2.P. x P. (5.05)	$3.P_4 \times P_8 (4.99)$	18
FL (cm)	1. NDBG-625 (P ₈) (4.89) 2. NDBG-517 (P4) (2.88)	3.NDBG-70-2 (P ₃) (2.80) 4.NDBG-624 (P ₂) (1.58)	$1.P_7 \times P_9(6.29)$ 2.P. x P. (6.14)	3.P ₂ x P ₈ (6.11)	11
FC(cm)	1. NDBG-749-2 (P ₉) (2.76)	2. NDBG-70-2 (P ₃) (1.36)	$1.P_{3}^{T} \times P_{6}^{2}$ (4.36) 2.P_{3} \times P_{7} (3.79)	$3.P_4 \times P_5(2.63)$	6
FW (kg)	1. NDBG-625 (P ₈) (0.11) 2. NDBG-749-2 (P ₆) (0.10)	3.NDBG-603 (P ₆) (0.04) 4.NDBG-70-2 (P ₂) (0.03)	$1.P_{2}^{3} \times P_{9}^{7} (0.38)$ 2.P_{2} \times P_{10} (0.36)	$3.P_1 \times P_3 (0.28)$	11
FP	1. NDBG-601 (P ₅) (0.49) 2. NDBG-751(P ₁₀) (0.42)	3.NDBG-517 (P4) (0.36) 4.NDBG-624 (P ₋) (0.16)	$1.P_{3}^{2} \times P_{7}^{10}(2.14)$ 2.P_{4} \times P_{10}(1.77)	3.P ₃ x P ₆ (1.59)	13
FYP(kg)	1. NDBG-601 (P ₅) (0.42) 2. NDBG-749-2 (P ₉) (0.38)	3.NDBG-751(P ₁₀) (0.25) 4.NDBG-517 (P4) (0.12)	$1.P_{3}^{+}x P_{6}^{-}(2.13)$ $2.P_{3}x P_{7}^{-}(2.12)$	3.P ₄ x P ₁₀ (1.53)	14

Table 3: Promosing general combiner based on GCA effects and promising specific combiner based on SCA effects for studied traits

Traits: Days to first staminate flower anthesis (DAFSF); Days to first pistillate flower anthesis (DAFPF); Node number to first staminate flower anthesis (NAFSF); Node number to first pistillate flower anthesis (NAFPF); Days to first fruit harvest (DFFH); Vine length (m) (VL); Primary branches per plant(PBP); Fruit length (cm)(FL); Fruit circumference (cm)(FC); Fruit weight (kg)(FW); Fruits per plant(FP); Fruit yield per plant (kg)(FYP). Parents: Pusa Naveen (P₁); NDBG-202 LF (P₂); NDBG-707-2 (P₃); NDBG-517 (P₄); NDBG-600 (P₅); NDBG-603 (P₆); NDBG-62 (P₇); NDBG-625 (P₈); NDBG-749-2 (P₃) and NDBG-751 (P₁₀)

Components/ proportions	DAFSF	DAFPF	NAFSF	NAFPF	DFFH	VL (m)
D^	26.02**±8.18	55.96**±8.65	0.57±0.43	9.16**±0.57	31.00**±3.58	0.36*±0.15
Ĥ1	114.73**±17.41	121.85** <u>+</u> 18.40	5.69** <u>+</u> 0.92	13.04**±1.22	54.81**±7.63	1.94**±0.32
Ĥ2	73.31**±14.79	69.61**±15.64	4.41**±0.78	7.90**±1.04	38.84**±6.48	1.63**±0.27
Ê	55.66**±18.87	96.46** <u>+</u> 19.95	1.03 <u>+</u> 0.99	12.19**±1.32	36.93**±8.27	0.21 <u>+</u> 0.35
ĥ2	5.52 ± 9.90	0.09 <u>+</u> 10.47	4.03**±0.52	10.12**±0.69	$20.22 * * \pm 4.34$	0.34 <u>+</u> 0.18
Ê	0.13 <u>+</u> 2.47	0.13 <u>+</u> 2.61	0.10±0.13	0.11±0.17	1.36 <u>+</u> 1.08	0.06 <u>+</u> 0.05
(Ĥ1/D)1/2	2.1	1.48	3.15	1.19	1.33	2.32
Ĥ2/4Ĥ1	0.16	0.14	0.19	0.15	0.18	0.21
(4 DĤ1)1/2+F	3.07	3.81	1.8	3.52	2.62	1.28
(4DĤ1)1/2 F						
ĥ2/Ĥ2	0.08	0	0.91	1.28	0.52	0.21
t2	0.89	0.01	13.36*	3.1	0.01	1.45
h² (N. S.)	16	21.3	17.8	32	31	29

Genetic components of variation and its proportions

The results of genetic component analysis revealed over dominance for most of the traits except fruit length representing partial dominance. Sit and Sirohi (2008) found that the gene distribution among the parents was asymmetry as the proportion of dominant and recessive genes exceeds one for all studied traits except vine length. In all the traits except fruit length, the dominance component of genetic variation (H₁) was higher than additive component (D). Heritability in narrow sense (h²) was found highest for fruit length (72%). All remain traits had narrow sense heritability less than 50 % which is sign of preponderance of non-additive gene action for most of the traits under study as similar reported by Quamruzzaman and Ahmad (2010) (Table 4). Sit and Sirohi (2008) reported that predominance of non-additive gene action and below 50 % narrow-sense heritability for all studied traits except fruit length emphasize that the heterosis breeding has prime importance to acquire high-yielding bottle gourd hybrid. The proportion of genes with positive and negative effect in the parents (H₂/4H₁) was found to be less than 0.25 for all the traits under study indicating asymmetry distribution of dominant genes with positive and negative alleles at loci as similar reported by Dubey and Ram (2006). Positive F value indicates dominant gene control (Hayman, 1954). The average degree of dominance (H₁/D)^{1/2} was found to be more than one for all the traits under study except fruit length. It confirmed over

Table 4: Cont.....

Components/ proportions	РВР	FL (cm)	FC(cm)	FW (kg)	FP	FYP(kg)
D^	55.10** <u>+</u> 6.14	46.66**±4.12	25.42**±1.93	0.06** <u>+</u> 0.01	1.50**±0.36	0.36 <u>+</u> 0.31
Ĥ1	94.64**±13.06	41.11**±8.76	26.03**±4.11	$0.12^{**} \pm 0.02$	$4.36^{**} \pm 0.76$	3.18**±0.65
Ĥ 2	49.36**±11.10	30.66**±7.44	15.26**±3.49	$0.09^{**} \pm 0.02$	2.93**±0.64	2.78**±0.55
Ê	89.18**±14.16	7.63 <u>+</u> 9.49	$32.49^{**} \pm 4.45$	$0.08^{**} \pm 0.02$	$2.35^{**} \pm 0.82$	0.33 ± 0.71
h2	18.37*±7.43	3.83 <u>+</u> 4.98	$10.66^{**} \pm 2.34$	0.00 ± 0.01	0.12 ± 0.43	0.67 ± 0.37
Ê	0.27 ± 1.85	1.03 ± 1.24	0.50 ± 0.58	0.00 ± 0.00	0.06±0.11	0.04 ± 0.09
(Ĥ1/D)1/2	1.31	0.94	1.01	1.41	1.7	2.98
Ĥ2/4Ĥ1	0.13	0.19	0.15	0.18	0.17	0.22
(4 DĤ1)1/2+F	4.23	1.19	4.43	2.8	2.69	1.37
(4DĤ1)1/2 F						
ĥ2/Ĥ2	0.37	0.13	0.7	0	0.04	0.24
t2	1.82	0.11	0.02	0.06	0.38	2.33
h² (N. S.)	27	72	35	25	23	19

*,** Significant at 5% and 1%, respectively. Traits: Days to first staminate flower anthesis(DAFSF);Days to first pistillate flower anthesis (DAFPF);Node number to first staminate flower anthesis (NAFSF); Node number to first pistillate flower anthesis (NAFSF); Days to first fruit harvest (DFFH);Vine length (m) (VL);Primary branches per plant(PBP);Fruit length (cm)(FL); Fruit circumference (cm)(FC); Fruit weight (kg)(FW); Fruits per plant(FP);Fruit yield per plant (kg)(FYP).

Table 5: Visual observations on fruit characteristics for	[·] promising ten F ₁ 's hy	brids
---	---	-------

Genotypes	Fruit shape	Presence of neck	Fruit surface	Fruit colour	General rating
$P_1 \times P_2$	Small Cylindrical	Without neck	Smooth	Green	Very good
$P_{1} \times P_{10}$	Small Cylindrical	With neck	Smooth	Light green	Very Good
$P_{1} \times P_{3}$	Medium Cylindrical	Without neck	Smooth	Pale green	Very good
$P_{2} \times P_{5}$	Medium Cylindrical	Without neck	Smooth	Pale green	Very Good
$P_{2} \times P_{6}$	Small thin Cylindrical	Without neck	Smooth	Pale green	Very Good
$P_{2} \times P_{10}$	Small Cylindrical slight curve	Without neck	Smooth	Pale green	Very Good
$P_{4} \times P_{5}$	Long thin slight curve	With neck	Smooth	Pale green	Very good
$P_{A} \times P_{9}$	Small Cylindrical	Without neck	Smooth	Pale green	Very good
$P_6 x P_7$	Small thin Cylindrical	Without neck	Smooth	Pale green	Very good
$P_6 \times P_{10}$	Small thin Cylindrical	Without neck	Smooth	Pale green	Very good

Parents: Pusa Naveen (P₁); NDBG-202 LF (P₂); NDBG-707-2 (P₃); NDBG-517 (P₄); NDBG-601 (P₅); NDBG-603 (P₆); NDBG-624 (P₂); NDBG-625 (P₈); NDBG-749-2 (P₉); NDBG-751 (P₁₀).

Table 6: Parental distribution considering	g dominant and recessive alleles based on	ı graphical analysis (Wr-Vr graph),
	A	

Trait	Parents with maximumfrequency of dominant alleles	Parents with intermediate proportion of dominant and recessive alleles	Parents with maximum frequency of recessive alleles
DAFSF	P2, P4, P7	P1, P3, P5, P9, P10	P6, P8
DAFPF	P3, P4	P1, P2, P5, P7, P9, P10	P6, P8
NAFSF	P1, P5	P3, P4, P6, P8, P9, P10	P2, P7
NAFPF	P1, P3, P7, P10	P4, P5, P6, P8, P9	P2
DFFH	P1, P4,P8, P9, P10	P2, P3, P5, P6	Ρ7
VL (m)	P1, P3, P10	P4, P5, P7, P9	P2, P6, P8
PBP	P1, P3, P5, P7, P8, P9, P10	P2, P4	P6
FL (cm)	Р3, Р7, Р9	P5,P6,P8,P10	P1, P2, P4
FC(cm)	P1, P2, P3, P4, P5, P6, P7, P8, P10	Nil	P9
FW (kg)	P3, P4, P5, P6	P1, P7, P8, P9, P10	P2
FP	Nil	P1, P2, P8, P9	P3, P4, P5, P6, P7, P10
FYP(kg)	Nil	P1, P2, P8, P9, P10	P3, P4, P5, P6, P7

Traits: Days to first staminate flower anthesis (DAFSF); Days to first pistillate flower anthesis (DAFPF); Node number to first staminate flower anthesis (NAFSF); Node number to first pistillate flower anthesis (NAFFF); Days to first fruit harvest (DFFH); Vine length (m) (VL); Primary branches per plant(PBP); Fruit length (cm)(FL); Fruit circumference (cm)(FC); Fruit weight (kg)(FW); Fruits per plant(FP); Fruit yield per plant (kg)(FYP). Parents: Pusa Naveen (P₁); NDBG-202 LF (P₂); NDBG-707-2 (P₃); NDBG-517 (P₄); NDBG-601 (P₂); NDBG-603 (P₆); NDBG-624 (P₂); NDBG-625 (P₂); NDBG-749-2 (P₃); NDBG-751 (P₁₀).

dominance gene action for all studied traits as similar reported by Dubey and Ram (2006). Ratio of dominant and recessive alleles $(4DH1)^{1/2}$ +F/ $(4DH1)^{1/2}$ -F was more than unity for all studied traits indicating presence excess of dominant alleles. The higher proportions of dominant genes observed in most of the traits are in agreement with the findings of Pandey *et al.* (2004) and Dey *et al.*(2012) (Table 4). Graphical analysis of recorded data was done in order to get information about allelic constitution of the parents used in the diallel cross. In the present study, F value indicates preponderance of non-additive genetic variance and absence of epistasis as similar to GCA to SCA variance ratio (Table 1 and 4) in consonance with Quamruzzaman .and Ahmad (2010). It represent over dominance for all studied traits. D is less than H₁ when intercept is negative. It indicated the fulfillment of the assumption that epistasis is absent for these traits. Parental distribution considering dominant and recessive alleles based on graphical analysis are represented in Table 6. The Wr (offspring covariance)/Vr (parental variance) graph analysis revealed that most of parents having maximum frequency of dominant alleles for all studied traits except fruit per plant and fruit yield per plant exhibiting maximum frequency of recessive alleles as similar reported by Dubey and Ram (2006). However, Sit and Sirohi (2008) elaborate that the dominant alleles were more comman in parents than recessive alleles for all the traits except vine length.

REFERENCES

Askel, R. and Johnson, L. P. V. 1963. Analysis of a diallel cross: A worked example. *Adv. Front. Pl. Sci.* 2: 37-54.

Dey, S. S., Behera, T. K., Munshi, A. D., Rakshit, S. and Bhatia, R. 2012. Utility of gynoecious sex form in heterosis breeding of bitter gourd and genetics of associated vegetative and flowering traits. *Indian J. Hort.* 69(4): 523-529.

Dubey, R. K. and Ram, H. H. 2006. Graphical Analysis (Wr-Vr) and Numerical Approach for a Diallel analysis of Yield Components in Bottlegourd (*Lagenaria siceraria* (Mol.) standl.). *Cucurbit Genetics Cooperative Report.* **28-29**: 94-104.

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. *Aust. J. Biol. Sci.* 9: 463-493.

Hayes, H. K., Immer, F. and Smith, D. C. 1955. Methods of plant breeding. Mc. Graw-Hill Book Co., Inc. New York, pp. 52-66.

Hayman, B. I. 1954. The theory and analysis of diallel crosses. *Genet.* 39: 789-809.

Jinks, J. L. and Hayman, B. I. 1953. The analysis of diallel crosses. *Hered.* 10: 1-30.

Kumar, A., Baranwal, D. K., Aparna, J. and Srivastava, K. 2013. Combining ability and heterosis for yield and its contributing traits in okra (*Abelmoschus esculantus* (L.) Moench). *Madras Agricult. J.* **100** (1-3): 30-35.

Makani, A. Y., Patel, A. L., Bhatt, M. M. and Patel P. C. 2013.

Heterosis for yield and its contributing attributes in Brinjal (Solanum melongena L.) The Bioscan. **8(4)**: 1369-1371

Mendez-Natera J. R., Rondon, A. Hernandez, J. and Fernando Merazo-Pinto, J. 2012. Genetic Studies in Upland Cotton (*Gossypium hirsutum* L.) II. General and Specific Combining Ability. J. Agr. Sci. Tech. 14: 617-627.

Pandey, S. K., Srivastava, S. B. L., Singh, N. P. and Srivastava, J. P. 2004. Heterosis and combining ability for earliness in bottle gourd (*Lagenaria siceraria* (Molina) Standl.). *Veg. Sci.* **31**: 11-16.

Panse, V. G. and Shukhatme, P. V. 1967. Statistical methods for agriculture workers (2nd eds.). *Indian Council of Agriculture Research,* New Delhi.

Parvathi, L. and Reddy, E. N. 2005. Genetic analysis of yield and its components in F2 generation of bottle gourd (Lagenaria siceraria (Mol.) standl). J. Res. ANGRAU. 33(1): 36-41.

Pitchaimuthu, M. and Sirohi, P. S. 1994. Studies on heterosis in bottle gourd. South Ind. Hort. 42: 18-21.

Quamruzzaman, A. K. M. and Ahmad, S. 2010. Genetic analysis of some yield components of bottle gourd [*Lagenaria siceraria* (Mol.) Standl.]. *SAARC J. Ag.* 8b: 1-9.

Ravishanker, Kumar, S., Chatterjee, A., Baranwal, D. K. and Solankey, S. S. 2014.Genetic variability for yield and quality traits in ginger (Zingiber officinale Roscoe). The Bioscan 8(4): 1383-1386.

Sharma, A. and Sengupta, S. K. 2013.Genetic diversity, heritability and morphological characterization in bottle gourd (*Lagenaria siceraria* (mol.) stand). *The Bioscan.* **8(4)**: 1461-1465.

Singh, A. K., Pan, R. S. and Bhavana, P. 2013. Heterosis and combining ability analysis in bittergourd (*Momordica charantia* L.). *The Bioscan.* 8(4): 1533-1536.

Singh, M., Devi, E. L., Aglawe, S., kousar, N. and Behera, C.2013. Estimation of heterosis in different crosses of bread wheat (*Triticum aestivum L.*). *The Bioscan.* **8(4)**: 1393-1401.

Sit, A. K. and Sirohi, P. S. 2008. Genetic architecture of yield and yield attributing characters of bottle gourd. *Ind. J. Hort.* 65(2): 243-244.

Yadav, S. K., Singh, B. K., Baranwal, D. K. and Solankey, S. S. 2013. Genetic study of heterosis for yield and quality components in tomato (*Solanum lycopersicum*). *AJAR*. **8(44)**: 5585-3391.